
 Git & GitHub
An Invitation to Version Control

Jyotirmaya Shivottam
January 12, 2024



Table of Contents
Version Control Systems and why we need them?

What are Git & GitHub?

Git Primer - Some Basic Concepts

Git Primer - Some Keywords

Branching & Merging Illustrated
Managing the 24cs460(clone) repo

.gitignore

Bonus Slides

References

Git & GitHub: An Invitation to Version Control 1



Version Control Systems and why we need them?
"Version" refers to a specific state of the codebase at a given
point in time, and "Control" refers to the ability to manage
changes to the codebase over time. VCS are also called Source
Control Systems.
VCS store snapshots of your codebase at different points in time.
Through these snapshots, they let you compare changes to files.
They also allow you to revert files / entire projects back to any
state, thereby preventing you from losing your work, e.g., if you
make a mistake in your code or accidentally delete something.
For CS460, since you'll be working in groups, VCS will help you
collaborate with your groupmates.

Git & GitHub: An Invitation to Version Control 2



What are Git & GitHub?
Git is a free and open-source distributed VCS, that works via the
command line interface, i.e., a CLI tool. You can download and
install it from https://git-scm.com/downloads.
GitHub is a web-based hosting service for version control using
Git. There are other similar services, e.g., GitLab, BitBucket,
etc. There are also other VCS, e.g., Mercurial, Subversion, etc.
Tip: Git is a tool, GitHub is a service. You can use Git without
GitHub, but not the other way around.
Tip: Git / GitHub are not automated  backup services. They are not a
replacement for Dropbox / Google Drive / OneDrive etc.

#1

Git & GitHub: An Invitation to Version Control 3

https://git-scm.com/downloads


Git Primer - Some Basic Concepts
Git is a distributed VCS. This means that every collaborator has a
complete working copy of the entire codebase, including its full
history.
Git stores the codebase in a repository, or repo for short. A repo
is a directory that contains all the files and folders of your
project, along with a special hidden folder called .git .

The .git  folder contains all the information about the history of
your project, including all the snapshots of your codebase, and
the changes made to it.
Commits are snapshots of your codebase at a given point in time.
Each commit has a unique identifier called a hash, which is a long
string of characters.

Git & GitHub: An Invitation to Version Control 4



Git Primer - Some Keywords
Some labels:

Local - The computer / server you are working on.
Remote - A GitHub repo that stores the codebase.

Origin - A GitHub repo, where you have pushed your codebase to / cloned
your codebase from.
Upstream - A repo on GitHub that you have forked to your GitHub account.

Branch - A parallel version of your codebase. You can have
multiple branches, e.g., main , dev , feature-1 , etc.
Forking - Creating a copy of a repo on GitHub, under your GitHub
account.
Pull / Merge Requests - A request to merge a branch into another
branch. This is how you collaborate with others on GitHub.

Git & GitHub: An Invitation to Version Control 5



Branching & Merging Illustrated

Source: https://www.atlassian.com/git/tutorials/using-branches/git-merge

Git & GitHub: An Invitation to Version Control 6



Managing the 24cs460(clone) repo
1. Go to https://github.com/JeS24/24cs460clone.
2. Fork the repo to your GitHub account.
3. Clone the repo to your computer (next slides).
4. Make some changes to the repo (next slides).
5. Commit the changes to your local repo (next slides).
6. Push the changes to your GitHub repo (next slides).
7. Create a pull request to merge your changes into the main repo

(next slides).
8. Watch the pull request get merged (next slides).
9. Sync your local repo with the upstream repo (next slides).

10. Handle merge conflicts (next slides).

Git & GitHub: An Invitation to Version Control 7

https://github.com/JeS24/24cs460clone


git init  and git clone
To clone an existing repo, you can use the git clone <remote>

command. This creates a new repo in the current directory, and
downloads the codebase from the remote repo.
OPTIONAL: To create a new repo, you can use the git init  command.
This creates a new repo in the current directory.

Git & GitHub: An Invitation to Version Control 8



git remote -v

git remote -v  shows you the remote URLs of your repo.
git remote show <name>  shows you information about the remote with the
given name.
OPTIONAL:

git remote add / rm <name> <url>  adds / removes a new remote to your repo,
with the given name and URL.
git remote set-url <name> <url>  changes the URL of the remote with the
given name.
git remote prune <name>  removes all the remote-tracking branches that no
longer exist on the remote with the given name.

Git & GitHub: An Invitation to Version Control 9



git branch , git checkout  and git switch
git branch  shows you the branches in your repo.
git branch <name>  creates a new branch with the given name.
git checkout <name>  / git switch <name>  switches to the branch with the
given name.
git checkout -b <name>  / git switch -c <name>  creates a new branch with
the given name, and switches to it.
git checkout <commit-hash>  / git switch <commit-hash>  switches to the
commit with the given hash.
Tip: Branch names should be short, e.g., main , dev , feature-1 , etc.

Git & GitHub: An Invitation to Version Control 10



git add , git rm , git restore , git status
Make a change to the repo, e.g., add a new file, modify an existing
file, etc.
git add -A   git add *  adds all modified files in the repo to the
staging area.
git status  shows you the status of your repo, including the files
in the staging area.

git rm --cached <file>  removes the given file from the staging area,
but keeps it in the working directory.
git rm <file>  / git rm -r <folder>  removes the given file / folder
from the working directory (if there are no modifications).
git restore <path>  undoes changes to files in the working directory.

Git & GitHub: An Invitation to Version Control 11



git commit  (& git commit --amend )
git commit -m "<message>"  commits the changes in the staging area to
the local repo, with the given message. It does not affect the
remote repo (till we push).
git commit -a -m "<message>"  stages ("adds") & commits all the changes
to the local repo, with the given message.
Tip: Commit messages should be short, yet precise e.g., "Add
README.md", "Fix typo in README.md", etc.

OPTIONAL:
git commit --amend  lets you amend the last commit, i.e., change the
commit message, add / remove files from the commit, etc.
git commit --amend --no-edit  lets you amend the last commit, without
changing the commit message.

Git & GitHub: An Invitation to Version Control 12



git push

git push <remote> <branch>  pushes the changes in the local repo to the
remote repo, to the given branch (here, origin  & main ).
git push -u <remote> <branch>  sets the given remote repo and branch as
the upstream for the current branch. This lets you use git push

(and git pull ) without specifying the remote and branch each time.
OPTIONAL:

git push --force  forces the push to the remote repo, even if it results
in a non-fast-forward merge. This is usually a bad idea, and should be
avoided.
git push --delete <remote> <branch>  deletes the given branch from the remote
repo.

Git & GitHub: An Invitation to Version Control 13



git pull  (& git fetch )
git pull <remote> <branch>  pulls the changes from the remote repo to
the local repo, from the given branch (here, origin  & main ).
git fetch <remote> <branch>  fetches the changes from the remote repo to
the local repo, but does not merge the changes into local.
To update your local repo, you should pull the changes from the
remote repo, and then merge them into your local repo.
If there are no merge conflicts, git pull  will merge the changes
into your local repo, and fast-forward your branch to the latest
commit on the remote repo.
Tip: If you don't see remote's changes in local, try git fetch

first, and then git pull .

Git & GitHub: An Invitation to Version Control 14



Creating a Pull Request (PR) & Merging PRs
Go to your GitHub repo, and click on the Pull Requests tab.
Find the branch you want to merge, and click on New pull request.
Select the base branch, i.e., the branch you want to merge into.
Select the compare branch, i.e., the branch you want to merge
from.
Click on Create pull request.
Add a title and a description for the PR.
Click on Create pull request.
Wait for the PR to be merged.

Git & GitHub: An Invitation to Version Control 15



Syncing your Local Repo with the Upstream Repo
Tip: Always pull before you push, to avoid merge conflicts.
Else:

git fetch upstream  fetches the changes from the remote repo to the local
repo, but does not merge the changes into local.
git merge upstream/<branch>  merges the changes from the remote repo into
the local repo, from the given branch (here, upstream  & main ).
git push origin <branch>  pushes the changes from the local repo to the
remote repo, to the given branch (here, origin  & main ).

Git & GitHub: An Invitation to Version Control 16



Handling Merge Conflicts
Let us make a conflicting change to README.md .
Run git fetch .
git merge upstream/main  to start a merge. It should result in a merge
conflict.
git status  shows you the files with merge conflicts.
git diff  shows you the conflicting changes.
Check the staging area in VS Code to see the conflicting changes.
Resolve the merge conflict in VS Code. Once resolved, the file
will be staged and you can commit and push it.
git merge --abort  aborts the merge.

Git & GitHub: An Invitation to Version Control 17



git reset  - The (almost-)Nuclear Option
git reset  lets you reset your repo to a previous state.
git reset --hard <commit-hash>  resets your repo to the given commit,
and deletes (!!) all the commits after it.
git reset --soft <commit-hash>  resets your repo to the given commit,
but keeps (!!) all the commits after it.
git reset ~<n>  resets your repo to the commit n commits before the
current commit.
git reset HEAD~<n>  resets your repo to the commit n commits before
the current commit, and unstages all the commits after it.
Tip: Use git reset --hard  with caution. It is a destructive command, and
can result in data loss.

Git & GitHub: An Invitation to Version Control 18



git revert  - The Safer Alternatives
git revert  lets you undo a commit, without deleting it.
git revert <commit-hash>  creates a new commit that undoes the changes
in the given commit.
Tip: Use git revert  instead of git reset --hard  to undo commits.

Git & GitHub: An Invitation to Version Control 19



git stash

git stash  lets you stash your changes, i.e., save them for later.
This is useful, when you want to switch branches or pull remote,
but you have uncommitted changes in your current branch.
git stash pop  pops the last stash, i.e., it restores the last stash,
and deletes it from the stash list.
When you stash your changes, you can give it a name, e.g., git 

stash push -m "<name>" .
git stash list  shows you the list of stashes.
git stash show <stash-name>  shows you the changes in the given stash.

Git & GitHub: An Invitation to Version Control 20



.gitignore

.gitignore  is a file that lets you ignore files and folders in your
repo. The files and folders in .gitignore  are not tracked by git.
You can use wildcards in .gitignore , e.g., *.pyc , *.log , __pycache__ ,
etc.
You can also use negation in .gitignore , e.g., !*.py , !*.md , etc.
Tip: You should always add .gitignore  to the root of your repo, and
commit it.

Tip: You can use templates for .gitignore , e.g., ones provided by
GitHub for several languages.

Git & GitHub: An Invitation to Version Control 21



Bonus Slides



Where to get help?
On a terminal:
git <subcommand> --help   git help <subcommand> , e.g., git commit --help .
On the web:

Git Documentation: https://git-scm.com/docs
GitHub Documentation: https://docs.github.com/en
StackOverflow: https://stackoverflow.com/questions/tagged/git
ChatGPT: https://chat.openai.com/

Some repos to practice git:
https://github.com/firstcontributions/first-contributions

Create a repo on your GitHub account and play around with it.

Git & GitHub: An Invitation to Version Control 22

https://git-scm.com/docs
https://docs.github.com/en
https://stackoverflow.com/questions/tagged/git
https://chat.openai.com/
https://github.com/firstcontributions/first-contributions


Some notes on GitHub usage
GitHub has a file size limit of 100 MiB per file, and of 1 GiB with
Git Large File Storage.
It has a file count limit of 300 updated files per commit at 100 MB
per file for free accounts.
Tip: Don't store large monolithic files, like dataset archives, in
your repo.

Tip: Don't store too many files, like images from extracted archives,
or coding artifacts, like compiled binaries, in your repo.

Tip: GitHub also provides access to github.dev or vscode.dev, to view
and edit your repos in the browser itself. Try pressing the . key
while viewing your repo in the browser.

Git & GitHub: An Invitation to Version Control 23

https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-git-large-file-storage#about-git-large-file-storage
https://stackoverflow.com/a/59479166/11922029
https://stackoverflow.com/a/59479166/11922029


GitHub Pro for Students
GitHub offers a free Pro account to students, as part of the GitHub
Student Developer Pack. This gives you access to a bunch of useful
features, like GitHub CoPilot and GitHub Codespaces.
You can apply for the pack at https://education.github.com/pack.
They ask for some proof of enrollment, e.g., a student ID card, a
transcript, etc., that you submit each year. I strongly recommend
applying for it.
GitHub CoPilot is an AI pair programmer that helps you write code.
Think of it like ChatGPT but with access to your codebase. So, you
can ask it to comment your code, write test cases or to explain an
error / a piece of code to you, among other things.
You can read more about it at https://copilot.github.com/.

Git & GitHub: An Invitation to Version Control 24

https://education.github.com/pack
https://copilot.github.com/


git config

git config  lets you configure your git installation.
git config --global user.name "<name>"  sets your name for git commits.
git config --global user.email "<email>"  sets your email for git commits.
git config --global core.editor "<editor>"  sets your editor for git
commits.
git config --global credential.helper "<helper>"  sets your password /
credential helper for git.
git config --global --list  shows you the global git configuration.
git config --list  shows you the local git configuration.
git config --get <key>  shows you the value of the given key in the
local git configuration, e.g., git config --get remote.origin.url .

Git & GitHub: An Invitation to Version Control 25



git submodule

git submodule  lets you include another repo as a submodule in your
repo.
This is useful when you want to reuse code from another repo,
e.g., a library, a framework, etc.
git submodule add <url>  adds the repo at the given URL as a submodule
to your repo.
git submodule update --init --recursive  updates the submodules in your
repo.
git submodule foreach git pull origin main  pulls the latest changes from
the remote repos to the submodule.

Git & GitHub: An Invitation to Version Control 26



git <subcommand> --dry-run

git <subcommand> --dry-run  is a dry run of a git command. It shows you
what the command would do, without actually doing it.
For example, git add --dry-run  shows you all the files that would be
added to the staging area, without actually adding them.
Note that git --dry-run  is not a git subcommand. It is an option
that you can append to any git subcommand, e.g., git add --dry-run .
Also, it is not a universal option. It is only available for some
git subcommands, e.g., git add , git rm , git commit , etc.
Other subcommands have their own dry run analogues, e.g., git 

merge --no-commit --no-ff , etc.

Git & GitHub: An Invitation to Version Control 27



References
Thorough Git tutorial:
https://www.atlassian.com/git/tutorials/setting-up-a-repository

GitHub walkthrough: https://docs.github.com/en/get-
started/quickstart/hello-world

Git & GitHub: An Invitation to Version Control 28

https://www.atlassian.com/git/tutorials/setting-up-a-repository
https://docs.github.com/en/get-started/quickstart/hello-world
https://docs.github.com/en/get-started/quickstart/hello-world


Thank you! Any questions?


